
1

Integrating Bazel and pre-
commit

2025-05-22

Matt Clarkson

2

Git Hooks

• Git hooks are a way to automate project checks

• Linting and formatting are good examples

• Git runs various stages of hooks from .git/hooks or another configured location

• Each stage is an executed Shell script

• A common stage is pre-commit which runs before a Git commit is completed

• Simple to execute various tools as part of a stage from Shell script

• Often, we need:
• Multiple tools

• Different languages

• Dependencies that need to be installed

• Becomes complex to manage

3

pre-commit framework

• Available at https://pre-commit.com

• A Git hook framework written in Python

• Configured via a .pre-commit-config.yaml

• Can use published, pre-configured hooks

• pre-commit will hermetically setup hooks
• Language runtime downloaded

• Hook installed into isolated environment

• Uses a shared user cache

• Hooks are only executed on matched files
• Can use a regular expression on filename
• Use a type such as python, protobuf, etc

• Possible to use local hooks
• No dependencies are installed

• Has a lovely user experience

• Highly recommended framework!

repos:

- repo: https://github.com/pre-commit/pre-commit-hooks

 rev: v2.3.0

 hooks:

 - id: check-yaml

 - id: end-of-file-fixer

 - id: trailing-whitespace

- repo: https://github.com/psf/black

 rev: 22.10.0

 hooks:

 - id: black

- repo: local

 hooks:

 - id: check-requirements

 name: check requirements files

 language: system

 entry: python -m scripts.check_requirements --compare

 files: ^requirements.*\.txt$

https://pre-commit.com/
https://pre-commit.com/
https://pre-commit.com/
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/psf/black

4

• Hermetic tools

• Hooks run on matched files

• Excellent user experience

• Lots of published hooks

• Cache is local

• pre-commit needs to be

installed locally

• Cannot share configurations

• Language runtime

downloaded for each hook

• Hooks are setup serially

• Long hook setup time

Bad Ugly

Good, bad and the ugly

Good

5

Bazel

• Use Bazel to hermetically install Python and pre-commit

• Each hook is local which calls into a Bazel run target

• Generate .pre-commit-config.yaml with Bazel

• Teach pre-commit Shell script to re-use Bazel downloads

6

Bazel
Use Bazel to hermetically install Python and pre-commit

• Need to expose pre-commit entrypoint

• Do not control rules_python Python version

• Use uv to generate a universal lockfile

• Generate pip hubs for each Python version

• Select hub with select statement

• bazel run @pre-commit is hermetic

7

Bazel
Each hook is local which calls into a Bazel run target

• Use the pre_commit_hook rule

• Bazel run target provided to src

attribute

• Run target will use Bazel cache

• Remote cache to share dependencies

• Hook is shared with normal Bazel

visibility rules

load(

 "@pre-commit//pre-commit/hook:defs.bzl",

 "pre_commit_hook",

)

pre_commit_hook(

 name = "format",

 src = "@buildifier_prebuilt//:buildifier",

 description = "Use `.buildifier.json` for config.",

 stages = [

 "@pre-commit//pre-commit/stage:pre-commit",

],

 summary = "Format Bazel files",

 types_or = [

 "@pre-commit//pre-commit/tag:bazel",

],

 visibility = ["//visibility:public"],

)

8

Bazel
Generate .pre-commit-config.yaml with Bazel

• Use the pre_commit_config rule

• Provide hooks to srcs attribute

• Generate configuration to out attribute

• bazel run :config

load(

 "@pre-commit//pre-commit/config:defs.bzl",

 "pre_commit_config",

)

pre_commit_config(

 name = "config",

 srcs = [

 "@pre-commit-hooks//buildifier",

],

 out = ".pre-commit-config.yaml",

)

9

Bazel
Teach pre-commit Shell script to re-use Bazel downloads

• Use the pre_commit_install rule

• Installs the generated configuration

• Runs pre-commit install

• Monkey patches extra code into the

Shell script to call into hermetic pre-
commit from Bazel

load(

 "@pre-commit//pre-commit/install:defs.bzl",

 "pre_commit_install",

)

pre_commit_install(

 name = "install",

 src = ":config",

)

10

pre_commit macro

• Does everything that is needed

• Put it in hooks/BUILD.bazel
• bazel run hooks:config
• bazel run hooks:install
• bazel run hooks

• Add bazel run hooks to CI to enforce checks

load("@pre-commit//pre-commit:defs.bzl", "pre_commit")

pre_commit(

 name = "hooks",

 srcs = [

 "@pre-commit-hooks",

],

)

11

Try it out!

• Stable but not currently in Bazel Central Registry (BCR)

• Add the release registry endpoints:

https://gitlab.arm.com/bazel/pre-commit/-/releases/v${VERSION}/downloads

https://gitlab.arm.com/bazel/pre-commit-hooks/-/releases/v${VERSION}/downloads

Thank You

	Slide 1: Integrating Bazel and pre-commit
	Slide 2: Git Hooks
	Slide 3: pre-commit framework
	Slide 4: Good, bad and the ugly
	Slide 5: Bazel
	Slide 6: Bazel
	Slide 7: Bazel
	Slide 8: Bazel
	Slide 9: Bazel
	Slide 10: pre_commit macro
	Slide 11: Try it out!
	Slide 12

