arm

Integrating Bazel and pre-
commit




Git Hooks

Git hooks are a way to automate project checks

Linting and formatting are good examples

Git runs various stages of hooks from . git/hooks or another configured location
Each stage is an executed Shell script

A common stage is pre-commit which runs before a Git commit is completed
Simple to execute various tools as part of a stage from Shell script

Often, we need:
- Multiple tools
- Different languages
- Dependencies that need to be installed

Becomes complex to manage

q rm Public © 2025 Arm 2



pre-commit framework

- Available at https://pre-commit.com
- A Git hook framework written in Python
- Configured viaa .pre-commit-config.yaml

- Can use published, pre-configured hooks

- pre-commit will hermetically setup hooks
- Language runtime downloaded
- Hook installed into isolated environment
- Uses a shared user cache

- Hooks are only executed on matched files
- Can use a regular expression on filename
- Use a type such as python, protobuf, etc

- Possible to use local hooks
- No dependencies are installed

- Has a lovely user experience
- Highly recommended framework!

arm

repos :

- repo: https://github.com/pre-commit/pre-commit-hooks

rev: v2.3.0
hooks:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/psf/black
rev: 22.10.0
hooks :
- id: black

- repo: local

hooks :
- id: check-requirements
name: check requirements files

language: system

entry: python -m scripts.check _requirements --compare

files: “~requirements.*\.txt$

Public © 2025 Arm

3


https://pre-commit.com/
https://pre-commit.com/
https://pre-commit.com/
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/psf/black

Good, bad and the ugly

Good Bad Ugly
Hermetic tools - Cache is local - Language runtime
Hooks run on matched files . pre-commit needs to be downloaded for each hook
Excellent user experience installed locally + Hooks are setup serially
Lots of published hooks - Cannot share configurations - Long hook setup time

a rm Public © 2025 Arm 4



Bazel

Use Bazel to hermetically install Python and pre-commit
Each hook is 1ocal which calls into a Bazel run target
Generate . pre-commit-config.yaml with Bazel

Teach pre-commit Shell script to re-use Bazel downloads

a rm Public © 2025 Arm 5



Bazel
Use Bazel to hermetically install Python and pre-commit

Need to expose pre-commit entrypoint

Do not control rules python Python version
Use uv to generate a universal lockfile
Generate pip hubs for each Python version
Select hub with select statement

bazel run @pre-commit is hermetic

q rm Public© 2025 Arm 6



Bazel
Each hook is 1ocal which calls into a Bazel run target

- Use the pre_commit_hook rule toad(
- T‘ "@pre-commit//pre-commit/hook:defs.bzl",

- Bazel run target provided to src "pre_commit_hook",

attribute )
- Run target will use Bazel cache ore_commit_hook(
- Remote cache to share dependencies name = “format”,

. _ src = "@buildifier_prebuilt//:buildifier",

¢ HOOk IS Shared Wlth normal Bazel description = "Use " .buildifier.json  for config.",

visibility rules stages = [

"@pre-commit//pre-commit/stage:pre-commit"”,

1,

summary = "Format Bazel files",
types or = |
"@pre-commit//pre-commit/tag:bazel",

1,
visibility = ["//visibility:public"],

q rm Public © 2025 Arm 7



Bazel
Generate .pre-commit-config.yaml with Bazel

- Use the pre_commit config rule Load(
. - — . "@pre-commit//pre-commit/config:defs.bz1",
- Provide hooks to srcs attribute "pre_commit_config",
- Generate configuration to out attribute
« bazel run :COn'Fig pre_commit_config(
name = "config",
srcs = [
"@pre-commit-hooks//buildifier",
1,
out = ".pre-commit-config.yaml",
)

q rm Public© 2025 Arm 8



Bazel
Teach pre-commit Shell script to re-use Bazel downloads

load(
"@pre-commit//pre-commit/install:defs.bzl",

- Installs the generated configuration "pre_commit_install®,
)

- Use the pre commit install rule

- Runs pre-commit install

- Monkey patches extra code into the pre_commit_install(
Yp
Shell script to call into hermetic pre- name = "install®,
commit from Bazel src = "iconfig’,

q rm Public© 2025 Arm 9



pre_commit macro

- Does everything that is needed load("@pre-commit//pre-commit:defs.bz1", "pre_commit")

- Putitin hooks/BUILD.bazel

- bazel run hooks:config
- bazel run hooks:install
- bazel run hooks

- Add bazel run hooks to Cl to enforce checks ],

pre_commit(

name "hooks",
srcs = [

"@pre-commit-hooks",

q rm Public © 2025 Arm 10



Try it out!

Stable but not currently in Bazel Central Registry (BCR)
Add the release registry endpoints:

https://gitlab.arm.com/bazel/pre-commit/-/releases/v${VERSION}/downloads
https://gitlab.arm.com/bazel/pre-commit-hooks/-/releases/v${VERSION}/downloads

q rm Public © 2025 Arm 11



arm

Merci
Danke
Gracias
Grazie

1 151
HYDED
Asante
Thank You
AP Cf
Tddlc
Kiitos

84

SRS

NTIN
cﬁézg;ycsanw

Koszonom




	Slide 1: Integrating Bazel and pre-commit
	Slide 2: Git Hooks
	Slide 3: pre-commit framework
	Slide 4: Good, bad and the ugly
	Slide 5: Bazel
	Slide 6: Bazel
	Slide 7: Bazel
	Slide 8: Bazel
	Slide 9: Bazel
	Slide 10: pre_commit macro
	Slide 11: Try it out!
	Slide 12

