
Measuring & Improving Build Speeds

Vaibhav Shah
London Build Meetup

Why Measure Build Speeds?
● “You can't fix what you don't measure.”

● Unhappy developers

○ Unable to iterate and make changes quickly

○ Context switching

● Unhappy business

○ More bugs

○ Longer release timelines

● Builds aren’t everything, but they are critical

Raise your hand
if you measure build times

Raise your hand
if you measure builds at the task or action-level

A Typical Build Journey
● Stage 0: Chaos

○ No one really cares.

● Stage 1: Awareness

○ Complaints about latency and productivity hits

● Stage 2: Measure a little bit

○ Spot-check builds & relevant logs to determine slowness

● Stage 3: Improve build speeds

○ Throw more compute at the problem and shard jobs in CI

● Stage 4: Measure again

○ Collect CI timing via logs/dashboards and instrument local builds

Design Matters
● Not all build systems are the same

○ Dependency tracking

○ Invalidation strategy

○ Execution modes

● What you can measure depends on what the system

tracks

What should we ideally measure?
● Wall time → latency

● Critical path → bottlenecks

● Cache hits → reuse efficiency

● Action or task time → bottlenecks by type

● CI trends → regressions

● Resource utilization (CPU, RAM, I/O, network)

Builds in CI
● Job duration (i.e. wall time)

○ Timing for individual pipelines

● Queue time

● Concurrency

● Exit codes and statuses

● Resource usage (CPU/RAM)

Best resources for measurement
● Profiling

○ Task/action execution times

○ Spawn strategy

○ Critical path breakdown

○ Memory usage

● Compilation commands

● Query language

● External Infrastructure

By Build System
● Bazel: Build Event Protocol, remote execution

● Buck2: profiling, remote execution

● Gradle: build scans, profiler plugins

● CMake: log parsing, profiling, compilation commands

● JS tools: plugins like SpeedMeasure, logging

● Others: time, dstat, iostat, netstat

Collect metrics
● Log total duration + timestamp to file if no profiling

● Emit profiles and/or metrics to something like

Prometheus or BigQuery

● Parse profiles for action/task level timings and resource

utilization

● Aggregate and visualize with Grafana or custom

dashboards

Improving Build Speeds

● Provide more resources to the build

○ Use better CPUs and/or more RAM

○ Increase parallelism

● Enable caching

○ Fix hermeticity issues

● Break down bottlenecks in the critical path

● Modularization

Thank You!

