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Why Measure Build Speeds?
“You can't fix what you don't measure.”
Unhappy developers
o Unable to iterate and make changes quickly
o Context switching
Unhappy business
o More bugs
o Longer release timelines

Builds aren’t everything, but they are critical
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Raise your hand
if you measure build times
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Raise your hand
if you measure builds at the task or action-level



A Typical Build Journey

e Stage 0: Chaos

o No one really cares.

Stage I: Awareness

o Complaints about latency and productivity hits

Stage 2: Measure a little bit

o Spot-check builds & relevant logs to determine slowness

Stage 3: Improve build speeds

o Throw more compute at the problem and shard jobs in CI

Stage 4: Measure again

o Collect CI timing via logs/dashboards and instrument local builds



Design Matters
e Not all build systems are the same
o Dependency tracking
o Invalidation strategy
o Execution modes
e What you can measure depends on what the system

tracks



What should we ideally measure?
Wall time — latency
Critical path — bottlenecks
Cache hits — reuse efficiency
Action or task time — bottlenecks by type
Cl trends — regressions
Resource utilization (CPU, RAM, 1/O, network)



Builds in Cl
e Job duration (i.e. wall time)
o Timing for individual pipelines
e Queuetime
e Concurrency
e Exit codes and statuses
e Resource usage (CPU/RAM)



Best resources for measurement
e Profiling
o Task/action execution times
o Spawn strategy
o Critical path breakdown
o Memory usage
e Compilation commands
e Querylanguage

e External Infrastructure



By Build System

Bazel: Build Event Protocol, remote execution

Buck2: profiling, remote execution

Gradle: build scans, profiler plugins

CMake: log parsing, profiling, compilation commands
JS tools: plugins like SpeedMeasure, logging

Others: time, dstat, iostat, netstat



Collect metrics
Log total duration + timestamp to file if no profiling
Emit profiles and/or metrics to something like
Prometheus or BigQuery
Parse profiles for action/task level timings and resource
utilization
Aggregate and visualize with Grafana or custom
dashboards



Improving Build Speeds

Provide more resources to the build
o Use better CPUs and/or more RAM
o Increase parallelism
Enable caching
o Fix hermeticity issues
Break down bottlenecks in the critical path

Modularization



Thank You!



