Measuring & Improving Build Speeds

London Build Meetup
Vaibhav Shah



Why Measure Build Speeds?
“You can't fix what you don't measure.”
Unhappy developers
o Unable to iterate and make changes quickly
o Context switching
Unhappy business
o More bugs
o Longer release timelines

Builds aren’t everything, but they are critical



ZEngFlow»

Raise your hand
if you measure build times



ZEngFlow»

Raise your hand
if you measure builds at the task or action-level



A Typical Build Journey

e Stage 0: Chaos

o No one really cares.

Stage I: Awareness

o Complaints about latency and productivity hits

Stage 2: Measure a little bit

o Spot-check builds & relevant logs to determine slowness

Stage 3: Improve build speeds

o Throw more compute at the problem and shard jobs in CI

Stage 4: Measure again

o Collect CI timing via logs/dashboards and instrument local builds



Design Matters
e Not all build systems are the same
o Dependency tracking
o Invalidation strategy
o Execution modes
e What you can measure depends on what the system

tracks



What should we ideally measure?
Wall time — latency
Critical path — bottlenecks
Cache hits — reuse efficiency
Action or task time — bottlenecks by type
Cl trends — regressions
Resource utilization (CPU, RAM, 1/O, network)



Builds in Cl
e Job duration (i.e. wall time)
o Timing for individual pipelines
e Queuetime
e Concurrency
e Exit codes and statuses
e Resource usage (CPU/RAM)



Best resources for measurement
e Profiling
o Task/action execution times
o Spawn strategy
o Critical path breakdown
o Memory usage
e Compilation commands
e Querylanguage

e External Infrastructure



By Build System

Bazel: Build Event Protocol, remote execution

Buck2: profiling, remote execution

Gradle: build scans, profiler plugins

CMake: log parsing, profiling, compilation commands
JS tools: plugins like SpeedMeasure, logging

Others: time, dstat, iostat, netstat



Collect metrics
Log total duration + timestamp to file if no profiling
Emit profiles and/or metrics to something like
Prometheus or BigQuery
Parse profiles for action/task level timings and resource
utilization
Aggregate and visualize with Grafana or custom
dashboards



Improving Build Speeds

Provide more resources to the build
o Use better CPUs and/or more RAM
o Increase parallelism
Enable caching
o Fix hermeticity issues
Break down bottlenecks in the critical path

Modularization



Thank You!



